Incommensurate nano-scale helical pitch evolution through the smectic- C_{α} *smectic- C^* transition

C. C. Huang, University of Minnesota DMR-0106122

The smectic- C_{α} **smectic-C* transition is* characterized by nanoscale helical pitch change. Resonant x-ray diffraction has been used to obtain the pitch evolution near the critical point of this transition. Near T_1 : first order transition, T_2 : continuous evolution

Layer thickness = 3.5nm 100 Pure C11 1st Film, 1st Heating Pitch (layers) 1st Film, 2nd Heating 2nd Film, Cooling **50** 2nd Film, 2nd Heating 2nd Film, 1st Heating C11:C12 (85:15) Mixture Heating 120 125 Temperature (°C)

High Resolution Optical Investigations of Layered Materials with Net Polarization

C. C. Huang, University of Minnesota, DMR-0106122

Education:

Two undergraduates (Peter Hauck and Nicholas Voshell), four graduate students (Jack Han, Suntao Wang, John Liu, and Siling Wang), and one visitor (Mick Veum, assistant professor at University of Wisconsin-Stevens Point) contributed to this work. Undergraduate Hauck will be a junior at Cornell University. Liu spent nine months at NSLS, Brookhaven National Lab. to conduct critical research projects using small angle x-ray diffraction. Han received his Ph.D. in 2004 and is presently a research associate at Advanced Photon Source, Argonne National Lab.

Outreach:

Professor Mick Veum has tested some critical experimental designs during his stay in my research group this summer. Upon returning to the University of Wisconsin-Stevens Point this Fall semester, Veum will continue his research project with the participation of, at least, two undergraduate students from his home department.